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~ ABSTRACT

/ \'\ = : T
Suppose that measurements X3 (X4g’ ...,x%ﬁ\), i 1,...,k, can be

taken on a unit sequentially in that order at the prescribed costs Ci’

-,
Lo 0= .~
. -

j=1,...,k. The unit comes from one of the two populations H{ and HZ’

and it is desired to select a population (from these two) from whifh the
SR Y

unit is supposed to belong to, on the basis of the measurements X1s %o

G1ven the loss incurred by se]ect1ng popu]at1on H* when in fact it

Nk

belongs to HJ the prior probab111ty pi of H (1 = 1,2), and assuming that

H has the normal distribution N(ug,v), i = 1,2, we derive the sequential

[N S o S e 1

Bayesian solution of the discrimination problem when Py s uz and V are

Lo~
r e

known. When Wy ) v are unknown and must be estimated, ue propose a solution

which is asymptotic Bayesian with exponential convergence rate.
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1. FORMULATION OF THE PROBLEM

Let H], H2 be two populations. We shall draw an individual a randomly
from one of them. The problem is to select a population from which a is

most likely to come. The selection is based upon some measurements of

variates (physical, chemical, biological, etc.) taken on the individual a,

and the decision is reached sequentially in the following manner. First,
the variates are divided into k groups with a definite preference order.
At the start we can make a decision or take measurements X1 of the first
group. We may choose to stop here and make a decision based on X|» Or we
can go further and proceed to take measurements X, belonging to the second
group. In general, after making observations on the first i groups and
recording the results xl,'..., X;» We may decide to terminate observation
and make a decision ( @ belongs to Hy or H2), or we can go a step further
and proceed to observe the (i+1)~th group. Since there are only k groups
of measurements, a final decision must be made after k stages of observa-
tion. We suppose that the cost of observing the i-th group is a constant
Ci’ i=1,...,k. These constants do not depend upon the results Xps wees X
of observations on these k groups of measurements.

The motivation behind such a scheme is obvious: Usually we have some
prior knowledge concerning the importance of various variates in the dis-
crimination of an individual. The gain of reliability in discrimination
through observing more variates must be weighted with the cost we pay in
obtaining the measurements of these variates (see Wald (1947, 1950)).

Denote X({y = (Xs---X{)'s § = 1,...,k. Assume that under H., the

distribution of X(i) is normal N(“j(i)’ V(i)) where




n Nz o Yy
u-
J1 Vo1 Va2 Vi
o= o, §=1,2; V iy =
Hi(i) J 2 (i)
u.
I Viv Va2 Vii
Denote
Uiy = Wi 1o Visn 20 oo Vippg)s 1= T2k
- -1 ' . . -
N,i - V,h. - U(i_])V(i_])U(i_])s 1= 2,3,...,‘(, N] - V]]

-] . .
. O NI N | P . N D = 1,...,k-1; jJ = 1,2.
G510 = ugaa UGG By TEiE))e T kel G = 12
If a € Hr’ the loss incurred by discriminating a into HS is lrs’ r,s = 1,2.
We shall assume.that oo < Ro1s 291 < Aqp- The prior probabilities of H]
and H2 are pys Py» 0 < Py < 1, P + Py = 1, respectively.

The problem is to find out the Bayes discrimination under the circum-

stances described above.

2. THE FORM OF BAYESIAN SOLUTION
In the sequel we use f(-,v,I) to denote the density function of N(v,r).
As is well known, if X(k) = x(k) has been observed, Bayesian discrimination
rule should be

f(XU&): Uzﬁ)s V(K)) p](l'” = 2]2)

< s accept H
f(x(k)’ U](k), V(k)) P2(222‘22]) !

(1)
f(X(k)s Uz(k)s v(k)) S p](z]]'llz)
f(x(k)’ u](k)’ v(k)) p2<£22-22])

accept H2.

The rule can be written as: When




i
(t2,k 1% (k- 1)) = bk (X (k- 1))) k %k

! : -1
< 5Lt 2,k-1% (k- 1))”k 2, k-1 X (k-1)) 7t ke a1y Mty ke (X ey

1 -
2Ly T2 e1)) Vike1) X (ke1) “H2(ke1))
-
= Oy ey Vil X ey T ey

+ Toglp (27 - 295)/p, (059 = 25101, (2)

We accept H], otherwise we accept HZ'

Denote

-1 -1 1
i ‘“H]@ﬁ(ﬂiﬂ'tlﬂxﬁ)v T Wit e i YY) By e

D
1., -1 ' -1
% = 7l i Minty, i (n)) = by 0y ity 5(x5y)]

* 2 L0y vy Vi gy = vga) = gy i) Y gy o ey

+ 1090Py (297 - 212)/p, (295 - 25901
Noticing that under X(k_]) = X(k-1) the conditional distribution of X(k) is
N(tj,k_](x(k_])), W)» We see that the probability of fulfilling the inequality

(2) is my k-1 under H;» where

My, 7 ¢{( Dlt31(x(1) // D;Wi410;)

Therefore, if we have already observed X(k~l) = x(k_]), then under this con-
dition, the continuation of observing X(k) followed by a decision according to
the rule (1) gives a conditional risk

_ ]
Ly = L3k1 By ]{211 1k-TP Xty -1y Vo)

2212, k-1P2f (k1) va(k-1)0 Vik-1))
+ 112(1-m]’k_])p]f(x(k_]), u](k_]), V(k_]))
* 2201 m )P Xy Mty Vigen)))

+ C] + C2 +...04 Ck.




On the other hand, if we make a decision without observing Xk. then the

posterior risk is

1

b= bk = 5 P e By Vientn

P (xony Hagke1)? Vik-1))%21!)

PO Y Gt Gy (4)

when we classify the individual 4 into H],

- 1

L2 = Lok = 5 P Geny Hren) s Viken) e

*Pof X1y Ha(k-1) Vik-1))%22

0 G+ (5)

when we classify a into Hy . In (3)-(5), the definition of LI is

83 = PfOxGiys myays Vi) * Pf(xgaye vagay Viay)- (®)

Denote by Li the minimum value of L], L2 and L3. If io =1 or 2, we

0
classify the individual a into H] or H2, respectively. Otherwise, we
go on observing Xk, and make the final decision according to (1).

Let Gk-l(x(k-l)) = m1n(L], L2, L3). It is the minimum posterior risk
we can get based on having observed X(k-l) (stop here or continue to observe).
In general, for any i, we define Gi(x(i)) as the minimum posterior risk we
can get based on having observed x(i) (stop here or continue to observe).
In the following we define Gi(x(i)) by induction. Suppose that we have
already defined Gi(x(i))’ i=k-1,k-2,...,k-2, and X(k-z-]) = X(k-2-1) has

been observed. If we stop observing and classify a into H] or H2, then




the posterior risk is

L

_ 1
17 Y ke2-1 T 3 PrF(X(og=1) Y 1(k-2-1)7 Y(k-2-1)%11

k-2-1

Y P X (kig-1)? M2(ke2-1)" V(k-2-1))%21)

+c.l+c + ... +C

2 k-2-1

or
1

L T e

2 = L2,ke01 T a7 P e Br(kea) V(keae1) 2

P (X (kog=1) ¥2(k-2-1)" V(k-2-1)%22

PO Gt H Gy

respectively. If we go on observing X , then the minimum risk we can

k-2
get is Gk-z(x(k-z-l)’ Xk-l)' according to the definition of Gk-l(x(k—l))'

Hence in this case the minimum posterior risk is

L, = L =
3 3,k-l-] Ak‘l"]

PP ega1)® ¥1(k=2-1)" V(k-2-1))

By Gemg X (k1) Koo)X (ene1)) *
Pof(X(kooc1ys Y2 (ken-1)" Vikog-1))
g (Oheg X(hgo1)> Moo X(kepot) -
Summing up, we get
Scgo1 K (eget)) = MnCLYs Lya Ly,

In this way we complete the induction process of defining Gi(x(i))’

i=1,...,k-1. Finally, we define
6y = min(Lygs Lygs Lag)
With Lig = Pitqq + Pofaps Lo = Pytyp * Polyns Lag = E6(X(4y).

Based upon the quantities just defined, we now introduce the following




discrimination rule:

Q

i°. First, determine i such that Li =G If i = 1 or 2, then

0 0’
we do not make any observation and classify the individuai into H] or H2,
respectively. Otherwise, proceed to 2°.

2°. Determine the following three sets:

App = I Ly < by Ly 2 Lgyd
Aoy = Ixqi Lyy > Loys Lgy 2 Lyyd
Agp = D Lyy > Lgps Ly > Ly

and observe X] = Xq If x| € Aj] for j = 1,2, then we stop observation,
and classify the individual into H] or H2, respectively. Otherwise, proceed
to 3°.

3°. In general, if we have not made a final decision after observing

x(i), then determine the following three sets:

AMLia T Bt b S e i S50
Az ie1 = Wit Ly i > Lo e baLien 2 L )
Aint T e Lin 2 by iae Losin 2 Ly i
and observe Xi+1 = X4 If Xi47 € Aj,i+] for j = 1,2, then we stop obser-

vation and classify the individual into H] or H2, respectively. Otherwise,

we return to the beginning of 3° with i changed to i + 1.

3. PROOF OF BAYESIAN PROPERTY OF THE RULE

Any sequential discrimination rule can be expressed in the form (T,s),
where T 1is "stopping time", i.e., T takes 0, 1, 2, ..., k as its value.
Either T = 0 and then § = H, or ¢ = Hy, or T does not take the value 0. In

d;
this case for any i > 1, the set {x(k) = T(x(k)) < i} has the form AiXR 1,




where Ai is a Borel set in x(i) and di is the sum of dimensions of Xip1> oo
Xy s S(X(T)) assumes the "values H1 or H2, and {X(T): d(x(T)) = H]} is a

Borel set in space X(T)‘ The Bayes risk of such a rule (T,8) is
B(T,8) = 915111’5(X(T)) * szzzz,s(x(T))'

Denoting by (T*,s*) the discrimination rule given in Section 2, we

have the following theorem:
THEQOREM 1. For any (T,8), we have
B(T,3) > B(T*,s*). (7)

Proof. Obviously, B(T,s8) > B(T*,s*) for any (T,8) when T* = 0. In the
following we assume that k > 1. It is trivial to verify that the conclusion
of the theorem is true when k = 1. For the general case, use the method of
induction. Suppose that the conclusion of Theorem 1 is true when k is re-

placed by k - 1. We have only to show that for any x,, the conditional risk

1’
(denoted by R(T,aIxT)) of discrimination {T,s) under the condition that
X] = Xy is observed, is always greater than or equal to the conditional risk
R(T*,&*{x]) of discrimination (T*,s*). Three cases are in order:

1°. According to (T,3), we should go on observing Xy

Since (after having ovserved X]) there are at most k - 1 groups of
measurements that may be observed, according to the induction assumption
that the theorem holds for k - 1 groups of observations, if we continue to
take observations according to the rule of {T*,s*) after having gotten

X, = X1 then the Bayes risk (which is L3] under the previous notations) we

1
get would not be greater than R(T,é]x]). But if we use the rule (T*,s*),
then, after having observed X] = X1 the minimum posterior risk we can get

is G1(x(])) = min(L]], L27, L3]). Therefore




Ve

R(T*,6%[x;) < R(T,8]x;). (8)

2. According to (T,s), after having observes X] = Xy we classify a in-

to H].

Now R(T,5|x]) = Lyy- But according to (T*,s*), we have
R(T*,6%|x) = G](x(1)) <Ly

So (8) is still true.

3°. According to (T,s), after having observed X; = X;, we classify
a into H2.

This case is similar to 2.

Therefore, we have shown that (8) is always true, and the theorem is

proved.

4. DETAILED COMPUTATION PROCEDURE FOR THE CASE OF k = 2

When k < 2, there are no computation difficulties in the application of
the method. When k > 2, L31 with i < k - 2 is not easy to compute, and the
application of the method is quite involved.

A very important case in practice is k = 2. For the case, we detail
the compution procedure as follows:

) _ =1
1°. Compute w2 = V22 - VZ]V]]V

12°
2”. Denote by X the observation of the first group. Calculate

- -1 .
t5(xp) = ugp + VW lxg mugg)s = 12,

1
> (g = by V¥ (g = 8y0))




q =‘%{t2(xl)“51t2(x1) - £ (xy)
) '] 1 ‘]
O gy V(g s ug) = (g =gV kg =g

4°. Compute m

o((a-0"t;(x))//AWD), = 1.2
5°. Compute 4 = p]f(x], A V]1) + pzf(x], boys V]]), and
Ly = 07 R s gy Vg * et g Vipdg) + 6
2 = 7 g F O g Vg * ppflxgs gy Vypdigy) +
Ly = a7 g ympyFlxy s wggn Vyg) 0y mapyfxgs upps Vo)
a1 omdog Fxgs uqgs Vig) + 2o (T=mp)poflxgs npps Vg))

+ C1 + C2.

6°. Find out the smallest iO such that L, = min(L], L, L3).

0
If io =1 or 2, then we classify the individual into H] or HZ' If iO = 3,

then we go on observing X2.

7°.  Compute D'x,. If D'x, < q (D and q have been computed in 37), we

classify a into H]. Otherwise, we classify a into H2.

5. THE CASE WHEN PARAMETERS ARE UNKNOWN

In the discussion above, we have assumed that Pys Pos Hys Wy and V are
all known. In practice, such parameters are usually unknown or partially
unknown. In such cases we must assume that some training samples Y(n) are
available to make some estimation on the unknown parameters, which will be
denoted by Pin? Pon’ “1n’ Y2n and Vn. Then we use these estimates to replace

Pys Pps bys ¥y and V in the above-defined algorithm. In this way we get a
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rule of discrimination which will be denoted by (Tn,én), whose Bayesian
risk is
where B(Tn(y(n)’ 6n(Y(n))) is to be understood as the Bayesian risk of the
discrimination rule obtained by the above scheme, on condition that the
training sample is fixed as Y(n)‘ Since for any Y(n) it is true that
*

B(To(Y(m))+ 80(Y(ny)) 2 B(T*06%),

we shall always have

B(T .5} > B(T*,6%).

Now we proceed to prove the following theorem.

THEOREM 2. If é]n’ ﬁZn’ ﬁ]n’ a2n and Qn are constant estimates of

. . - * o
Pys Pos s and V, respectively, then Alg B(Tn,dn) B(T*,s*%).
The proof of the theorem is based on the following lemma.

LEMMA 1. Denote by (?n,Sn) the discrimination rule obtained by substi-
tuting 9900 9207 V1n® Von and In for Pys Pos B> Uo and V in the definition

of (T*,5*) in Section 2. Then we have

B(T,»8,) ~ B(T,6) (9)
if
Qp ~ Py dop > Pos  Vip > Hys Vo 7 bg and = -~ V. (10)

n

Proof. We shall use Go(n), Gi(x(i)’")’ Lj.(n) to denote the quantities

1

corresponding to Gj, Gi(x(i))’ Lji in defining (Tn,an) by replacing p], etc.,
by Nn? etc.

Since it is obviogus that
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*x) =
B(T*,s5*) EGO,
B(Tn,dn) = EGO(n).
Therefore, on noticing the uniform boundedness of G0 and Go(n) (not exceed-

ing max(zij)y, we see that in order to prove the lemma we need only to prove

Aiﬂ LJO(n) = LjO’ j=1,2,3. (1)

Since Lyg(n) = aq2qy + apptays Lpgln) = Gypfyp * dpptpp and Gy, ~ Py
and 9, > Py, wWe see that (11) is true for j = 1,2.
In order to prove (11) for j = 3, we use induction. First suppose that

k = 1. According to the definition, we have
Lyg = PyMy2yy + Poatyy * Pyl =mpdegy + ppll=mp)ipy. (12)

Lyg(n) = Gy tqq + Ggpmonoy + Gy (1 =my )y, + a5 (1-my ey, (13)

where m, = P(g < 0fuysV), m, = P(g < 0luys¥),
Myp = Pley < 0vypaTp), Myp = Pley < OfvppnT ),
to-1 10,1 1 ' Py(2yy - 29p)
£ =XV (up-uy) + 50,V u, = muVowy - Tog - ;
1 2 1 272 2 - 7" 1 p2 122 22]
. 1 ¢ -1 1 ' -1 Unl2yq - 2y5)
and £ = XqZ_ {vp =vi.) * 5Us I Vo - FVy.5,. Vi, - 104 P
n 1*n ‘V2n " Vin Z2V2n*n “2n ~ 271n°n Vin q2n(n22 121)
It is clear that when (10) is true, the distribution of £ under (vin,zn) con-

verges to the distribution of £ under (ui,v), i =1,2, which entails

m]n -+ m], m2n - m2 when n > o,

According to (12) and (13), we have L30(n) - L30 and the case k = 1 is proved.

Now we assume that the conclusion of the lemma is true for k - 1.
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Express Ly and L30(n) as

Lyg = E min(Ly;s Lyys Lyy(X))).
Lyoln) = E min(L”(n), Ly, (n), L31(n,X1)).

Based on the expressions of L]], LZ] given in Section 2, we get

Lj](n) - LJ.], j=1,2. (14)

Also, considering the expressions of L3](X]) and L3](n,X]), in order to prove

that (14) is true for j = 3, we need only show that when (10) is true,
£(6,0 5y 1) » E(6, (X)) 1%,) (15)

for fixed X]. For this purpose, we note that to calculate the values of both
sides of (15), on condition that X] ijs observed, it is the same as calculating
EGT(X(]),n) and EG1(X(])) in the original problem with k reduced to k - 1.
Therefore the truth of (15) for any fixed X follows directly from the induction
hypothesis. From this, and the fact that Gz(x(z),n) is uniformly bounded, it
follows by the dominated convergence theorem that L30(n) > L30 for k. Thus

we prove (11) and hence the Temma.

Now back to the proof of the theorem. By Lemma 1, for any ¢ > 0, we can

take n > 0 small enough such that

’pl < Ny ”an"Uj” <n, J= 1,2, ”vn“V” < Ms (]6)

lpjn j

imply
BT (Y () 80(¥(n))) - B89 < e

By consistency we know that when n is large enough, the probability that the

inequalities in (16) are true simultaneously is not less than 1 - . Also,
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noticing that B(Tn(Y(n)), 6n(Y(n))) <M= max(zl], 2920 273 222), we get
IB(Tn’Gn) - B(T*aé*)l <€+ ME

for n large enough. This concludes the proof of the theorem.

Usually Y(n) = (Y]],...,Y]nl, Y21""’Y2n2) where Yi]’ cees Yini are
i.i.d., Yi] - N(ui,v) under Hi’ i =1,2. In this case we use

N R .
. . 2 N ) A
Vo = n]+n2—2 (121 jZ](Yij '“in)(Yij '“in)|)

to estimate u,, v, and V. Also we use 6in n./n to estimate p., i = 1,2,

where we assume that ny = B(n,pl), ny *+n,=n, 0 < Py < 1.

THEOREM 3. Under the conditions above, B(Tn(Y(n)), 6n(Y(n))> converges
to B(T*,5*) in exponential rate, i.e., for any « > 0, there exists a constant

C > 0 depending upon ¢ but not upon n, such that

P<[B(Tn(Y(n))> - B(T*,6%) | > €> = o(e”™). (17)

Proof. The proof runs largely along the line as in Theorem 1, with the

help of the following known result (see Petrov (1975)).

LEMMA 2. Let X], X2, ... be an i.i.d. sequence of random variables,

EX, = 0, and there exists & > 0 such that

tX.|
E(e ') <=, for |t} <s.

1

Then for any € > 0 there exists a constant C depending upon ¢ but not upon n,

such that
PUX | > ¢) = 0(e™™™),
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- 1 "
where Xn == ;xi.

Turning to the proof of the theorem, we note that the random variables
£y - N(O,oz), a% and £y - Py defined by
P(£2=]) = ] = P(£2=0) = p'la
all satisfy the condition of Lemma 2. From this it is easily seen that for

any given n > 0 we have

P(Ip;-p;) 2 n) = 0(e™), i =1,2 (18)
P = usll 2 ) = 0(e™™), 4= 1,2 (19)
POV - VIl > ) = 0(e™M). (20)

Now given arbitrarily ¢ > 0, according to Lemma 1, there exists n > 0 such

that

{lﬁin(Y(n))-pi' < N, ”Gin(v(n))'“i” <mn, i 1,25 H\A/n(Y(n))-VH < n}

= 18(T,(Y(n))s 8,(Y(p))) - B(T*.6%)] <

m
.

From this and (18)-(20), we get
P<|B(Tn(Y(n))’ 5n(Y(n))) - B(T*,8%)| > 5>

. 2 . .
P(Ipyp-Pil 2 n) + ,Z]P(Ilu,-n-uill >n) + PV -Vl > n)
i=

I A
-
Hoe- N
—)

= 0(e”"M),
and the proof is concluded.
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